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Abstract

We have recently presented a method that allows one to use periodic supercells in ab initio electronic structure calcu-
lations in the presence of a finite magnetic field [Phys. Rev. Lett. 92 (2004) 186402]. This method retains the simplicity and
efficiency of plane-wave basis sets and Fourier transforms. The original formulation was developed for cubic cell and for
the k = (0,0,0) point of the supercell Brillouin zone, and here we extend the formalism to arbitrarily tilted supercells and to
the case of non-zero k-points. Implementation details are discussed, together with numerical benchmarks. Finally, first
principles calculations of magnetic band structures are presented.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the last two decades, ab initio electronic structure methods based on density functional theory (DFT)
have been widely used to investigate the structural and electronic properties of molecules, clusters, and
bulk condensed matter [1]. In particular, the formulation of ab initio molecular dynamics (MD) [2] has
permitted key progress in the prediction of finite temperature properties of materials entirely from first
principles. The most widely used implementation of ab initio MD and of electronic structure calculations
for condensed systems is based on pseudopotentials and plane-wave (PW) basis sets. The use of PW has
several advantages. The convergence of total energy and force calculations can be controlled by a single
parameter (kinetic energy cut-off) and improved to arbitrary accuracy. Atomic forces can be easily com-
puted without evaluating the so-called Pulay contributions [3] and efficient fast Fourier transform (FFT)
techniques can be applied. PW basis sets call for the use of periodic boundary conditions (PBC), which
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conveniently eliminate surface and interface effects and allow for a small simulation cell to mimic the bulk
behavior of materials.

To date, most ab initio investigations have focused on ground state properties in the absence of external
electromagnetic fields. Due to technical difficulties in describing finite fields within PW formulations and using
PBC, almost all studies with electromagnetic fields have been carried out perturbatively. Within this approach,
simulations are performed at zero field and electric polarizability and magnetic susceptibility are computed
based on linear response theory [4]. This technique can be used only when the applied field is sufficiently small,
and there are many situations, e.g. condensed systems – notably hydrogen – in stars and planets [5], where the
effect of a finite field cannot be treated in a perturbative fashion.

Recently, there has been progress in explicitly incorporating a finite electric field in condensed-phase ab ini-

tio simulations [6], and a non-perturbative Bloch solution of the Schrödinger’s equation in a finite magnetic
field was proposed [7]. In addition, we have proposed a formulation of self-consistent ab initio calculations
within DFT where the effect of a finite, uniform magnetic field is treated in a non-perturbative manner, using
algorithms based on PW basis sets and FFT [8]. These algorithms have been key in the development of simple
and efficient first principles MD techniques. While the applicability of the proposed method has been demon-
strated on several problems, including one and two electrons in a quantum well (treated by using configuration
interaction), a hydrogen molecule (at the Hartree–Fock level), and a dense deuterium fluid (at the DFT level),
the original method was only developed for cubic supercells and the case of zero k-point (C-point). However,
in many applications, it may be more convenient to use a non-orthogonal supercell, e.g. to model crystals with
a non-cubic primitive cell. The orientation of the magnetic field can also be changed conveniently if one can
simply tilt the repeat vector of the supercell. At the same time, computing the electronic band structure under
magnetic field requires a method that can be applied to the case of non-zero k-points. Non-zero k-point cal-
culations are also important to study electron transport problems.

In this paper, we extend the method presented in Ref. [8] to arbitrarily tilted supercells and the case of non-
zero k-points. Section 2 formulates the problem of the incompatibility between periodic boundary conditions
and the presence of a uniform magnetic field, and it introduces magnetic periodic boundary conditions
(MPBC) as a solution. Section 3 explains the implementation details of MPBC in cubic supercells with the
C-point (k = (0,0,0)). In Section 4, the method is generalized to tilted supercells and non-zero k-points. Bench-
mark results on the computational cost and numerical accuracy of the method are presented in Section 5.
2. Problem statement

2.1. Boundary conditions for electron wave functions

Among existing ab initio methods to simulate condensed matter systems, one of the most popular and suc-
cessful ones is based on density functional theory (DFT), with single particle orbitals expanded in plane waves
and makes use of supercells and periodic boundary conditions (PBC). The Hamiltonian of a system containing
a single electron (considered here for simplicity), in the absence of an external electric or magnetic field, is
given by:
Ĥ ¼ jpj
2

2m
þ V ðxÞ; ð1Þ
where p = � i�h$ is the momentum operator and V(x) is the potential energy function describing the electron–
nuclei interaction.

If V(x) is periodic in space, i.e.,
V ðxþ ciÞ ¼ V ðxÞ; ð2Þ

where ci, i = 1,2,3, are three repeat vectors of a supercell, then, according to Bloch’s theorem, an eigen-func-
tion of the Hamiltonian satisfies the following boundary condition:
wðx� ciÞ ¼ exp½�ij � ci�wðxÞ ð3Þ

for arbitrary j. Using a standard notation for a Bloch wave function u(x), we have
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wðxÞ ¼ uðxÞeij�x ð4Þ

with u(x) satisfying periodic boundary conditions (PBC),
uðx� ciÞ ¼ uðxÞ: ð5Þ

There are several advantages in using PBC. First, PBC conveniently eliminate artificial surface effects and

are thus an ideal choice to model bulk material properties. Second, if an electron wave function satisfies PBC,
then it can be expanded as a linear superposition of plane waves. The (Fourier) coefficients of this expansion
constitute a natural discretization of the wave function. The convergence of this numerical representation can
be conveniently controlled by a single parameter, the maximum kinetic energy adopted in the plane wave
expansion. Third, when expanding a wave function w in plane waves, one can evaluate Ĥw by using highly
efficient fast Fourier transform (FFT) algorithms.

However, in principle this method cannot be generalized in a straightforward manner to include the pres-
ence of an external electric field E and magnetic field B. B and E do not enter the Hamiltonian Ĥ of the system,
but their potential fields do:
Ĥ ¼ jpþ eAðxÞj2

2m
þ V ðxÞ � e/ðxÞ; ð6Þ
where A is the vector potential of the magnetic field B and /(x) is the scalar potential of the electric field E,
E ¼ r/ðxÞ; ð7Þ
B ¼ r� AðxÞ: ð8Þ
For uniform electric or magnetic fields, the potential fields / or A are linear functions of x. As a result, the
Hamiltonian is no longer a periodic function of x, even though the nuclear potential V(x) is periodic. Conse-
quently, PBC can no longer be applied to electronic wave functions, which makes it difficult to use a plane
wave basis and FFT techniques.

In the following we discuss how to incorporate a finite and uniform magnetic field into ab initio simulations
and retain the conceptual simplicity of PW expansions.

2.2. Translational invariance under magnetic field

For an electron moving in a uniform magnetic field, the Lorenz force does zero work because it is always
perpendicular to the electron velocity. Consequently, we cannot distinguish two points in space under a uni-
form magnetic field by measuring the energy of the electron. In classical mechanics, an isolated electron orbits
in a circle with specific radius and frequency in a uniform magnetic field. If we were to transport the electron to a
different location in space, it will again orbit with the same radius and frequency. This intuitively suggests that
the physical space in which the electron moves is still translationally invariant even in the presence of a magnetic
field [9]. Thus a ‘‘periodic’’ boundary condition may still be applied to an electron in a uniform magnetic field.

In quantum mechanics, the translational invariance of space is apparently broken by the vector potential,
which is a linear function of space. However, we can use gauge invariance to restore translational invariance.
Multiple vector potentials A(x) can give rise to the same magnetic field through B = $ · A(x). We can add to
A the gradient of an arbitrary scalar field,
A0ðxÞ ¼ AðxÞ � rkðxÞ ð9Þ

without changing the magnetic field, i.e.,
B ¼ r� AðxÞ ¼ r � A0ðxÞ: ð10Þ

When a gauge transformation is applied to the vector potential, Eq. (9), the eigen-function w 0(x) of the new
Hamiltonian Ĥ 0 can be obtained from the eigen-function w(x) of the old Hamiltonian Ĥ by multiplying by a
phase factor,
w0ðxÞ ¼ exp i
e
�h
kðxÞ

h i
wðxÞ: ð11Þ
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Specifically, when k(x) = n Æ x, then the gauge transformation corresponds to adding an arbitrary constant
vector to the vector potential, and the eigen-function is multiplied by a plane wave,
Fig. 1.
superc
A0ðxÞ ¼ AðxÞ � n; ð12Þ

w0ðxÞ ¼ exp i
e
�h

n � x
h i

wðxÞ: ð13Þ
Because the absolute phase of a wave function is not an observable, the change of wave function phase upon a
gauge transformation can be regarded as a theoretical artifact. On the other hand, the electron density,
q(x) = jw(x)j2, which can be measured experimentally, remains unchanged when applying a gauge
transformation.

2.3. Magnetic periodic boundary condition

The gauge transformation expressed by Eqs. (12) and (13) has been used by Brown [10] to design magnetic
periodic boundary conditions (MPBC) for electron wave functions under a uniform magnetic field. The Ham-
iltonian of an electron under a uniform magnetic field is
Ĥ ¼ jpþ eAðxÞj2

2m
þ V ðxÞ: ð14Þ
For V(x) periodic in space, as in Eq. (2), the eigen-function of the Hamiltonian can be made to satisfy MPBC,
wðx� ciÞ ¼ exp i
e
�h

AðciÞ � x� ij � ci

h i
wðxÞ ð15Þ
for arbitrary j. If we define a Bloch wave function u(x) through Eq. (4), then u(x) satisfies the following
boundary condition:
uðx� ciÞ ¼ exp i
e
�h

AðciÞ � x
h i

uðxÞ: ð16Þ
When the magnetic field is zero, A(x) = 0, MPBC for w(x) reduces to the Bloch condition,
wðx� ciÞ ¼ exp½�ij � ci�wðxÞ ð17Þ

and MPBC for u(x) reduces to:
uðx� ciÞ ¼ uðxÞ: ð18Þ
If w(x) satisfies MPBC, then the electron density q(x) = jw(x)j2 always satisfies PBC, even when the magnetic
field is non-zero.
y

x

a

b

B

A

MPBC in the Landau gauge. The magnetic field is along z (out of plane), B = Bez and the vector potential is along y, A = Bxey. The
ell is an a · b rectangle.
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As a specific example, consider a cubic supercell, whose three repeat vectors are c1 ¼ aex; c2 ¼ bey ; c3 ¼
cez, where ex, ey and ez are unit vectors along x, y, z axes, respectively. Let the magnetic field be along the
z axis, i.e. B = Bez, and choose the Landau gauge, A = Bxey, as shown in Fig. 1. In this case, MPBC (Eq.
(16)) can be expressed as
uðx� a; y; zÞ ¼ exp i
eBa
�h

y
� �

uðx; y; zÞ; ð19Þ

uðx; y � b; zÞ ¼ uðx; y; zÞ; ð20Þ
uðx; y; z� cÞ ¼ uðx; y; zÞ: ð21Þ
The boundary condition in x direction is coupled with y, as in Eq. (19). On the other hand, the boundary con-
dition in z direction is simply periodic, as in Eq. (21), and independent of x and y. For simplicity, in the fol-
lowing we will ignore the z dependence of the wave function and discuss a two-dimensional wave function
u(x,y).
3. MPBC in orthogonal supercell with j = 0

3.1. Plane-wave-basis ab initio algorithm at B = 0

The main purpose of this section is to describe how to implement MPBC in an ab initio simulation. To this
end, we first summarize the basic computational strategy of ab initio simulations in the absence of a magnetic
field. In this case, the wave function u(x,y) satisfies PBC and can be expressed as a sum of plane waves,
uðx; yÞ ¼
X
kx;ky

cðkx; kyÞ expðikxxþ ikyyÞ; ð22Þ
where kx = mGx, ky = nGy, Gx = 2p/a, Gy = 2p/b, and m and n are integers. In practice, a truncation is ap-
plied, so that only a finite number of plane waves is included in the sum. The Fourier transform of Eq.
(22) is:
cðkx; kyÞ ¼
1

ab

Z a=2

�a=2

Z b=2

�b=2

uðx; yÞ expð�ikxx� ikyyÞ dx dy; ð23Þ
u(x,y) and c(kx,ky) are the real-space and reciprocal-space representations of the electronic wave function.
One can efficiently go from real to Fourier space by using fast Fourier transform (FFT) algorithms. For sim-
plicity, consider the case of j = 0 (Eq. (4)), so that u satisfies the same equation as w,
Ĥuðx; yÞ ¼ Euðx; yÞ: ð24Þ

The key step involved in solving Eq. (24) is the evaluation of Ĥuðx; yÞ for an arbitrary trial function u(x,y). Eq.
(24) can then be solved iteratively, e.g. using the steepest descent or the conjugate gradient algorithm [11], with
Ĥuðx; yÞ as the gradient vector. Alternatively, Ĥuðx; yÞ can be used for Car–Parrinello molecular dynamics
(CPMD) simulations [2].

In the absence of a magnetic field, the Hamiltonian can be separated into the kinetic energy operator T̂ and
potential energy operator V̂ , which are best evaluated in reciprocal space and real space, respectively. The
evaluation of the potential energy operator is simply a multiplication in real space,
V̂ uðx; yÞ ¼ V ðx; yÞuðx; yÞ: ð25Þ
The evaluation of the kinetic energy operator is simply a multiplication in reciprocal space,
T̂ cðkx; kyÞ ¼
�h2ðk2

x þ k2
yÞ

2m
cðkx; kyÞ: ð26Þ
Therefore, the two parts of Ĥuðx; yÞ can be evaluated separately in the two spaces and then assembled together
by FFT, as illustrated in Fig. 2.
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Fig. 2. Flow chart for computing Ĥcðkx; kyÞ given an arbitrary trial wave function cðkx; kyÞ (represented in reciprocal space). The kinetic

energy operator T̂ is a multiplication,
�h2ðk2

xþk2
y Þ

2m cðkx; kyÞ, in reciprocal space. The potential energy operator V̂ is a multiplication,
V ðx; yÞuðx; yÞ, in real space. The two parts are assembled together by fast Fourier transform (FFT).
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Numerically, the transformation between u(x,y) and c(kx,ky) can be done in one step by a two-dimensional
FFT. However, to set the stage for the B 6¼ 0 case, let us consider a two-step process. As shown in Fig. 3,
u(x,y) is first Fourier transformed along y-axis, leading to f(x,ky), which is then Fourier transformed along
x-axis, leading to c(kx,ky). f(x,ky) is the representation of the wave function in a so-called intermediate space,
since ky is a reciprocal-space variable and x is a real-space variable. In real space, u(x,y) is a periodic function
of two continuous variables, �a/2 6 x 6 a/2 and �b/2 6 y 6 b/2,
Fig. 3.
c(kx,ky
uðx� a; yÞ ¼ uðx; yÞ; ð27Þ
uðx; y � bÞ ¼ uðx; yÞ: ð28Þ
The intermediate space wave function, f(x,ky), is a function of a continuous variable, �a/2 6 x 6 a/2, and a
discrete variable, ky = nGy. For each ky, f(x,ky) is a periodic function of x,
f ðx� a; kyÞ ¼ f ðx; kyÞ: ð29Þ

Therefore, f(x,ky) can be regarded as a discrete set of one-dimensional, periodic functions, which are illus-
trated as a set of rings in Fig. 3. Fourier transforming each of these one-dimensional functions along x, we
obtain the reciprocal-space representation of the wave function, c(kx,ky), which is a function of two discrete
variables, kx = mGx, and ky = nGy.

3.2. Fourier transform of wave functions at B 6¼ 0

When a non-zero, uniform magnetic field is present, u(x,y) satisfies MPBC as in Eqs. (19)–(21),
uðx� a; yÞ ¼ exp i
eBa
�h

y
� �

uðx; yÞ; ð30Þ

uðx; y � bÞ ¼ uðx; yÞ: ð31Þ
Because u(x,y) is periodic in y, we can Fourier transform it along y and bring it to intermediate space,
f(x,ky).
At B = 0, u(x,y) satisfies PBC. Fourier transform u(x,y) along y axis gives f(x,ky). Fourier transform f(x,ky) along x axis gives
).
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uðx; yÞ ¼
X

ky

f ðx; kyÞ exp½ikyy�; ð32Þ

f ðx; kyÞ ¼
1

b

Z b=2

�b=2

uðx; yÞ exp½�ikyy� dy: ð33Þ
Correspondingly, use of Eq. (30) yields:
f ðx� a; kyÞ ¼ f x; ky �
eBa
�h

� �
: ð34Þ
Because ky has to be an integer multiple of Gy, so is eBa/�h. This limits the magnitude of the magnetic field that
can be applied to the supercell,
eBa
�h
¼ n0Gy ¼ n0

2p
b
; ð35Þ
where n0 is an arbitrary integer. As a result, the total magnetic flux through the supercell is,
U � Bab ¼ n0ðh=eÞ ¼ n0U0; ð36Þ

where U0 ” h/e is the fundamental quanta of magnetic flux. Therefore, the smallest magnitude of the magnetic
field that can be applied to an a · b supercell is
B0 �
h

eab
: ð37Þ
The magnetic field must be an integer multiple of B0, B = n0B0. This constraint on B can also be directly ob-
tained in real space. Imagine moving a point (x,y) along the border of the supercell in a complete loop,
ðx; yÞ ! ðxþ a; yÞ ! ðxþ a; y þ bÞ ! ðx; y þ bÞ ! ðx; yÞ, as shown in Fig. 1. MPBC (Eqs. (30) and (31)) re-
quires that at the end of the loop, the wave function pick up a phase, i.e.,
uðx; yÞ ) uðx; yÞ exp i
eBab

�h

� �
: ð38Þ
For consistency, the end result must be identical to u(x,y), thus
eBab
�h
¼ 2n0p ð39Þ
which is identical to Eq. (35). Different combinations of fa; b; n0g can be used to apply the same magnitude of
the magnetic field. For simplicity, we focus on the case of n0 = 1 in the following discussions and leave the case
of n0 > 1 to Appendix A. When B = B0, MPBC (Eq. (34)) becomes
f ðx� a; kyÞ ¼ f ðx; ky � GyÞ: ð40Þ

Therefore, in intermediate space, a one-dimensional function f(x,ky) for a given value of ky is no longer peri-

odic in x. Instead, as x varies from the left side to the right side of the supercell, the function should be continued
with a neighboring value of ky. In other words, the set of one-dimensional functions in intermediate space forms a
long spiral, as shown in Fig. 4. This topology is analogous to a screw dislocation in a crystal lattice [12].

To complete the analogy of the spiral, we define a new variable (along the spiral)
x̂ � xþ aky=Gy ð41Þ

and declare that in intermediate space the wave function is only a function of x̂, i.e.,
f ðx̂Þ � f ðx; kyÞ ¼ f ðxþ a; ky � GyÞ: ð42Þ

These definitions ensure that MPBC Eq. (40) is automatically satisfied. Therefore, the two-dimensional wave
function u(x,y) becomes a one-dimensional function f ðx̂Þ. The dimension reduction of wave functions by the
magnetic field was noticed previously [13].

The intermediate-space wave function f ðx̂Þ can be Fourier transformed along x̂, resulting in the reciprocal-
space representation cðkx̂Þ. In principle, x̂ ranges from �1 to 1. Therefore, kx̂ is a continuous variable



Fig. 4. At B = B0, u(x,y) satisfies MPBC, Eqs. (30) and (31). Fourier transform u(x,y) along y axis gives f ðx; kyÞ ¼ f̂ ðx̂Þ, where
x̂ ¼ xþ aky=Gy . Fourier transform f̂ ðx̂Þ along x̂ gives cðkx̂Þ.
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f ðx̂Þ ¼
Z 1

�1
cðkx̂Þ exp½ikx̂x̂� dkx̂; ð43Þ

cðkx̂Þ ¼
1

2p

Z 1

�1
f ðx̂Þ exp½�ikx̂x̂� dx̂: ð44Þ
In practice, the sum over ky in Eq. (32) is truncated, e.g. ky ¼ �ðNy=2ÞGy ; . . . ; ðNy=2� 1ÞGy (Ny is an even inte-
ger). Then the range of x̂ becomes ½�N ya=2;N ya=2�. Hence kx̂ becomes discretized, kx̂ ¼ nx̂Gx̂;Gx̂ ¼
2p=ðN yaÞ; nx̂ is an integer. The Fourier transform between f ðx̂Þ and cðkx̂Þ becomes
f ðx̂Þ ¼
X

kx̂

cðkx̂Þ exp½ikx̂x̂�; ð45Þ

cðkx̂Þ ¼
1

Nya

Z Ny a=2

�N ya=2

f ðx̂Þ exp½�ikx̂x̂� dx̂: ð46Þ
Combining Eqs. (32) and (45), u(x,y) can be expressed in terms of cðkx̂Þ as
uðx; yÞ ¼
X
kx̂ky

cðkx̂Þ exp½ikx̂ðxþ aky=GyÞ þ ikyy�: ð47Þ
In other words, u(x,y) is expanded as a sum of plane-wave-like functions, each one satisfying MPBC, and
cðkx̂Þ is the expansion coefficient.

3.3. Evaluation of Ĥwðx; yÞ at B 6¼ 0

As mentioned before, the key step in an ab initio calculation is to evaluate Ĥwðx; yÞ, given an arbitrary trial
wave function w(x,y). For simplicity, consider the case of j = 0, hence wðx; yÞ ¼ uðx; yÞ and let B = B0, i.e. we
consider the smallest non-zero magnetic field allowed in the supercell. In this case, the Hamiltonian can be
separated into three parts
Ĥ ¼ T̂ x þ T̂ y þ V̂ ; ð48Þ

T̂ x ¼ �
�h2o

2
x

2m
; ð49Þ

T̂ y ¼
ð�i�hoy þ eBxÞ2

2m
¼

�h2G2
y

2ma2
x� i

a
Gy

oy

� �2

; ð50Þ

V̂ ¼ V ðx; yÞ: ð51Þ
T̂ x is the x-component of the kinetic energy, T̂ y is the y-component of the kinetic energy, and V̂ is the potential
energy. T̂ x, T̂ y and V̂ can be easily evaluated in reciprocal, intermediate and real spaces, respectively. T̂ x simply
amounts to a multiplication operator in reciprocal space,
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Fig. 5. Flow chart for computing Ĥcðkx̂Þ given an arbitrary trial wave function cðkx̂Þ (represented in reciprocal space). The three parts are
assembled together by fast Fourier transform (FFT).
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T̂ xcðkx̂Þ ¼
�h2k2

x̂

2m
cðkx̂Þ; ð52Þ
T̂ y is simply a multiplication in intermediate space,
T̂ yf ðx̂Þ ¼
�h2G2

y x̂2

2ma2
f ðx̂Þ: ð53Þ
As usual, V̂ is simply a multiplication in real space,
V̂ uðx; yÞ ¼ V ðx; yÞuðx; yÞ: ð54Þ

Therefore, the three parts of Ĥuðx; yÞ can be evaluated separately in the three spaces and then assembled to-
gether by FFT, as illustrated in Fig. 5.

In summary, we have developed a method for computing the eigen-function of the Hamiltonian under a
uniform magnetic field. The electron wave function satisfies MPBC, while the electron density (together with
all other measurable field quantities) satisfies PBC. The wave function can be expressed as a sum of plane-
wave-like functions, each one satisfying MPBC. The Hamiltonian can be evaluated conveniently by comput-
ing its three parts in three (real, intermediate and reciprocal) spaces and by assembling them together by
FFT.

This approach was first described in [8]. It has been applied to several problems and its correctness was
assessed by comparing our results with previous findings obtained using different methods. These include
an electron in a quantum well, two electrons in a quantum well [14] (configuration integration), and a Hydro-
gen molecule [15] (Hartree–Fock). In all cases, the numerical results of this method agree well with previous
results. In addition the method was applied to the study of dense, hot deuterium [16]. However, the original
version of our formulation was limited to rectangular supercells and the case of j = 0 (C-point) only. In the
following, we describe the generalization of this approach to arbitrarily tilted supercells and the case of j 6¼ 0.

4. MPBC in tilted supercell with j 6¼ 0

4.1. Coordinate transformation

Consider a supercell whose repeat vectors c1; c2; c3 are no longer orthogonal to each other, but let the mag-
netic field B be still parallel to c3, as shown in Fig. 6. To facilitate the discussion, we introduce two coordinate
systems. The first coordinate system is formed by unit vectors ex, ey, ez, which are orthogonal to each other.
The second coordinate system is formed by unit vectors eX, eY, eZ, which are not orthogonal to each other.
They are parallel to the supercell repeat vectors,
c1 ¼ LX eX ; ð55Þ
c2 ¼ LY eY ; ð56Þ
c3 ¼ LZeZ : ð57Þ
As shown in Fig. 6, these two sets of unit vectors are related to each other by
ðeX eY eZÞ ¼ ðex ey ezÞM ; ð58Þ
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Fig. 6. (a) ex, ey, ez are unit vectors forming an orthogonal coordinate system, whereas eX, eY, eZ are unit vectors that are not orthogonal
to each other. h1 is the angle between eX and eY; h2 is the angle between ez and eZ; and h3 is the angle between ex and the projection of eZ on
the ex–ey plane. (b) A tilted simulation cell with repeat vectors c1 = LXeX, c2 = LYeY, c3 = LZeZ. The magnetic field B is parallel to c3.
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where
M �
1 cos h1 sin h2 cos h3

0 sin h1 sin h2 sin h3

0 0 cos h2

2
64

3
75: ð59Þ
Consider an arbitrary point x, whose coordinates are ðx; y; zÞ and ðX ; Y ; ZÞ in these two coordinate systems,
respectively, i.e.,
x ¼ ðex ey ezÞ �
x

y

z

2
64
3
75 ¼ ðeX eY eZÞ �

X

Y

Z

2
64

3
75
Define T as the inverse of matrix M,
T � M�1 ¼
1 � cos h1

sin h1

sin h2 sin h3 cos h1

cos h2 sin h1
� sin h2 cos h3

cos h2

0 1
sin h1

� sin h2 sin h3

cos h2 sin h1

0 0 1
cos h2

2
664

3
775;
then
X

Y

Z

2
64

3
75 ¼ T

x

y

z

2
64
3
75: ð60Þ
The chain rules of differentiation, e.g. o
ox ¼ o

oX
oX
ox þ o

oY
oY
ox þ o

oZ
oZ
ox, can be summarized as,
o

ox
o

oy
o

oz

� �
¼ o

oX
o

oY
o

oZ

� �
T : ð61Þ
This leads to the transformation rule in reciprocal space
ðkx ky kzÞ ¼ ðkX kY kZÞT : ð62Þ

We assume that the potential function V(x) is periodic in c1, c2 and c3. This means that V is a periodic function
of X, Y, and Z,
V ðX ; Y ; ZÞ ¼ V ðX � LX ; Y ; ZÞ ¼ V ðX ; Y � LY ;ZÞ ¼ V ðX ; Y ; Z � LZÞ: ð63Þ

Therefore, it is convenient to express the wave function as uðX ; Y ; ZÞ and discuss MPBC in terms of X, Y, and Z.

4.2. Gauge choice and MPBC in tilted supercells

A constant magnetic field B = BeZ can be described by an infinite number of vector potentials A(x), cor-
responding to different gauge choices. We would like to choose a specific gauge that makes the expression
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of MPBC as simple as possible. Similar to the choice made for orthogonal supercells (Section 2.3), let A be a
linear function of X and be independent of Y and Z, i.e,
A ¼ BX a; ð64Þ

where a is a constant vector. It turns out that
a ¼ eZ � eX ¼ M33ey �M23ez ð65Þ

is the correct choice that gives rise to $ · A = BeZ. Therefore,
Aðc1Þ � x ¼ BLX a � x ¼ BLX cos h2 sin h1Y ; ð66Þ
Aðc2Þ � x ¼ 0; ð67Þ
Aðc3Þ � x ¼ 0: ð68Þ
The application of MPBC (Eq. (16)) gives:
uðX � LX ; Y ; ZÞ ¼ exp i
eBLX

�h
cos h2 sin h1Y

� �
uðX ; Y ; ZÞ;

uðX ; Y � LY ; ZÞ ¼ uðX ; Y ; ZÞ;
uðX ; Y ; Z � LZÞ ¼ uðX ; Y ; ZÞ:

ð69Þ
In other words, the Bloch wave is a periodic function of Y and Z. This is a condition very similar to the
one established for orthogonal supercells. If we move from an arbitrary point x as, x! ðxþ c1Þ !
ðxþ c1 þ c2Þ ! ðxþ c2Þ ! x, and return to the original point, then the wave function will pick up a non-zero
phase, i.e.,
uðX ; Y ; ZÞ ) exp i
eBLX LY

�h
cos h2 sin h1

� �
uðX ; Y ; ZÞ: ð70Þ
For consistency, the end result must be identical to u(X,Y,Z), thus
eBLX LY

�h
cos h2 sin h1 ¼ 2n0p; ð71Þ
where n0 is an integer. Therefore,
U ¼ BLX LY cos h2 sin h1 ¼ n0

h
e
� n0U0 ð72Þ
which means that the total flux across the supercell is again an integer multiple of the fundamental flux quanta
U0 ” h/e. Thus the magnetic field which we can apply to the supercell is quantized,
B ¼ n0B0; B0 ¼
2p�h

eLX LY cos h2 sin h1

: ð73Þ
In terms of n0, MPBC can rewritten as
uðX � LX ; Y ; ZÞ ¼ exp i
2n0pY

LY

� �
uðX ; Y ; ZÞ;

uðX ; Y � LY ; ZÞ ¼ uðX ; Y ; ZÞ;
uðX ; Y ; Z � LZÞ ¼ uðX ; Y ; ZÞ:

ð74Þ
Because uðX ; Y ; ZÞ is periodic in both Y and Z directions, we can Fourier transform it along Y and Z

directions,
uðX ; Y ; ZÞ ¼
X
kY ;kZ

f ðX ; kY ; kZÞ exp½iðkY Y þ kZZÞ�; ð75Þ

f ðX ; kY ; kZÞ ¼
1

LY LZ

Z LY =2

�LY =2

Z LZ=2

�LZ=2

uðX ; Y ; ZÞ exp½�iðkY Y þ kZZÞ� dY dZ; ð76Þ
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where kY ¼ nY GY ; kZ ¼ nZGZ ; GY ¼ 2p=LY ; GZ ¼ 2p=LZ ; nY and nZ are integers. f ðX ; kY ; kZÞ is the interme-
diate-space representation of the wave function, because X is a real-space variable and kY, kZ are recipro-
cal-space variables. In intermediate space, MPBC becomes
f ðX � LX ; kY ; kZÞ ¼ f ðX ; kY � n0GY ;GZÞ: ð77Þ

For simplicity, here we only consider the case of n0 = 1. The case of n0 > 1 will be discussed in Appendix A.
When n0 = 1, Eq. (77) can be satisfied automatically by defining a new variable
X̂ � X þ LX

GY
kY ¼ X þ LX LY

2p
kY ð78Þ
and redefine the intermediate-space wave function as a function of X̂ and GZ,
f ðX̂ ; kZÞ � f ðX ; kY ; kZÞ ¼ f ðX � LX ; kY þ GY ; kZÞ: ð79Þ

Suppose the summation over kY is truncated into the range �ðN Y =2ÞGY ; . . . ; ðN Y =2� 1ÞGY (NY is an even
number), then the value of X̂ is limited to the domain ½�LX̂=2; LX̂=2�, where LX̂ ¼ N Y LX . We can then Fourier
transform f along X̂ .
f ðX̂ ; kZÞ ¼
X

kX̂

cðkX̂ ; kZÞ exp½ikX̂ X̂ �; ð80Þ

cðkX̂ ; kZÞ ¼
Z LX̂ =2

�LX̂ =2

f ðX̂ ; kZÞ exp½�ikX̂ X̂ � dX̂ ; ð81Þ
where kX̂ ¼ nX̂ GX̂ ; GX̂ ¼ 2p=LX̂ ; nX̂ is an integer. Combining Eqs. (75) and (80), uðX ; Y ; ZÞ can be expressed in
terms of cðkX̂ ; kZÞ as
uðX ; Y ; ZÞ ¼
X

kX̂ ;kY ;kZ

cðkX̂ ; kZÞ exp ikX̂ X þ kY
LX

GY

� �
þ iðkY Y þ kZZÞ

� �
: ð82Þ
In other words, u(X,Y,Z) is expanded as a sum of plane-wave-like functions, each satisfying MPBC, and
cðkX̂ ; kZÞ is the expansion coefficient.

4.3. Evaluation of ĤwðxÞ at B 6¼ 0

We now discuss how to evaluate ĤwðxÞ given an arbitrary trial wave function w(x). In the general case of
j 6¼ 0,
wðxÞ ¼ eij�xuðxÞ; ð83Þ
ĤwðxÞ ¼ eij�x ~HuðxÞ; ð84Þ
where
~H ¼ 1

2m
½pþ �hjþ eAðxÞ�2 þ V ðxÞ: ð85Þ
Therefore, our task is equivalent to evaluate ~HuðX ; Y ; ZÞ given an arbitrary trial wave function uðX ; Y ; ZÞ.
Similar to Section 3.3, we separate ~HuðX ; Y ; ZÞ into components that are convenient to evaluate in reciprocal,
intermediate and real spaces, respectively.

As usual, the potential energy V̂ uðX ; Y ; ZÞ ¼ V ðX ; Y ; ZÞuðX ; Y ; ZÞ is simply a multiplication operator in real
space. The kinetic energy operator is the square of the following operator:
pþ �hjþ eA ¼ �i�h
o

ox
o

oy
o

oz

� �
þ �hðjx jy jzÞ þ eBX ð0 M33 �M23Þ

¼ �i�h
o

oX
o

oY
o

oZ

� �
T þ �hðjX jY jZÞT þ 0

2n0p�h
LX LY

X 0

� �
T

¼ �i�h
o

oX
þ ijX

o

oY
þ ijY þ

2n0pi

LX LY
X

o

oZ
þ ijZ

� �
T :
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If one defines a vector operator
Fig. 7.
compo
b̂ � ðb̂X b̂Y b̂ZÞ ¼
o

oX
þ ijX ijY þ

2n0pi

LX LY
X̂

o

oZ
þ ijZ

� �
;

then the kinetic energy operator can be expressed as
T̂ ¼ � �h2

2m
b̂TT Tb̂T: ð86Þ
Different components of b̂ simply correspond to multiplications in different spaces. b̂X amounts to a multipli-
cation in reciprocal space,
b̂X cðkX̂ ; kZÞ ¼ iðkX̂ þ jX ÞcðkX̂ ; kZÞ; ð87Þ

b̂Y is a multiplication in intermediate space
b̂Y f ðX̂ ; kZÞ ¼ i
n0GY

LX
X̂ þ jY

� �
f ðX̂ ; kZÞ; ð88Þ
b̂Z is simply a multiplication in either reciprocal or intermediate space,
b̂ZcðkX̂ ; kZÞ ¼ iðkZ þ jZÞcðkX̂ ; kZÞ; ð89Þ
b̂Zf ðX̂ ; kZÞ ¼ iðkZ þ jZÞf ðX̂ ; kZÞ: ð90Þ
Therefore, ~HuðX ; Y ; ZÞ can be evaluated by computing its components in reciprocal, intermediate, and real
spaces and by assembling them by FFT. A flow chart is illustrated in Fig. 7, in which Eq. (89) is used. The flow
chart is more complicated than that for an orthogonal supercell, Fig. 5, because the matrix T is not diagonal.
Flow chart for computing ~HcðkX̂ ; kZÞ given an arbitrary trial wave function cðkX̂ ; kZÞ (represented in reciprocal space). Different
nents are evaluated in reciprocal, intermediate, and real spaces and assembled together by fast Fourier transform (FFT).
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In our calculations, to avoid ‘‘aliasing’’ effects in FFT, the size of the cðkX̂ ; kZÞ array is doubled in both
dimensions by padding zeros, before inverse-FFT into the intermediate space. Upon FFT back into the Fou-
rier space, the values in the padded region usually become non-zero and are discarded. The same procedure is
applied when the intermediate-space wave function is transformed into real space and back to compute the
potential energy term.

5. Numerical results

5.1. Computational workload

As discussed in the previous sections, for a wave function w satisfying MPBC under a non-zero magnetic
field, the procedure to evaluate of Ĥw is analogous to that adopted in the absence of magnetic field. Different
parts of Ĥw are evaluated in different spaces and assembled together by FFT. For relatively small systems, for
which the orthogonalization of electronic states (an OðN 3Þ operation) does not dominate the scaling of the
calculation, FFT is the most time consuming part of the computation, and it determines the scaling behavior
of the Ĥw calculation at both zero and non-zero magnetic field. In other words, applying a non-zero magnetic
field to the periodic supercell should not significantly slow down the ab initio calculation. The purpose of this
section is to verify this statement from a numerical standpoint.

Suppose w is expanded as a sum of Npw plane-wave basis functions (when B = 0) or Npw plane-wave-like
basis functions (when B 6¼ 0). The time it takes to compute Ĥw should scale in the same way as FFT, which is
OðN pw ln N pwÞ. In Fig. 8, we plot the wall-clock time to perform one Ĥw calculation as a function of the num-
ber of basis functions for different values of magnetic field B = n0B0. The simulation cell is a cube and the basis
functions are truncated in reciprocal space equally in all three directions. The calculations are performed on a
Linux Pentium 4 computer with 3.0 GHz clock rate. For all cases of n0 ¼ 0; 1; 2, a linear relation between the
computational time and Npw is observed. This is because lnNpw changes very slowly over this range of Npw.
The computation time for n0 = 1 and n0 = 2 is almost identical to each other, and they are only about 40%
higher than that of the n0 = 0 (zero magnetic field) case. This confirms that applying a finite magnetic field
only brings about a moderate increase to the computational time, while the scaling behavior remains the same
as the case of zero magnetic field.

5.2. Numerical accuracy

In this section, we study four test cases to assess the correctness and accuracy of the numerical method
described above. In a previous publication [8], the validity of the method has been demonstrated for single-
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Fig. 8. Wall-clock time for one calculation of Ĥw as a function of the number basis functions. The dashed lines are numerical fits to
CNpw lnNpw, where the fitting parameter is C = 5.2 · 10�8 (second) for n0 = 0 and C = 7.2 · 10�8 (second) for n0 = 1,2.
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electron and many-electron problems (configuration integration, Hartree–Fock, DFT), but only for the case
of orthogonal supercells and j = 0. Therefore, here we study the effect of the shape of the supercell, orienta-
tion of the magnetic field, and non-zero j, but focus on a single electron in a quantum well.

5.2.1. Quantum wells in arbitrarily shaped supercells

The first test demonstrates the self-consistency of the method, by representing the same periodic array of
quantum wells using different shapes of supercells. Consider an orthogonal supercell with dimension
(10 nm)3, as shown in Fig. 9a. The supercell contains a columnar quantum well, parallel to c3 and with a cross
section of 4 nm · 4 nm. Inside the quantum well the potential energy is V = 0; outside the quantum well, the
potential energy is V = V0 = 600 meV. The magnetic field B is parallel to c3 and its magnitude B is the smallest
allowable value B0 (n0 = 1). With the orthogonal supercell, the lowest six energy levels of this quantum well
array (at j = 0) can be obtained using the method described earlier [8]. They are listed on the second column
of Table 1, and will be used as a benchmark for calculations using tilted supercells.

The same periodic array of quantum wells can be described by many other types of supercells, whose repeat
vectors do not have to be orthogonal to each other. For example, Fig. 9b shows a supercell with repeat
vectors,
Fig. 9.
zero an
LX = L

LY ¼ 1
LX ¼ L

Table
The lo

Band n

1
2
3
4
5
6

c01 ¼ c1;

c02 ¼ c1 þ c2;

c03 ¼ c3;

ð91Þ
where c01 and c02 are not orthogonal to each other. At the same time, the physical shape of the quantum well
itself remains unchanged. Because this supercell describes the same quantum well array as in Fig. 9a, it should
have the same energy levels. They are listed on the third column of Table 1.
Three supercells describing the same periodic quantum well array. The potential energy inside the quantum well (grey region) is
d the potential energy outside is V0 = 600 meV. (a) Orthogonal supercell with repeat vectors c1 = LXex, c2 = LYey, c3 = LZez, with

Y = LZ = 10 nm. (b) Tilted cell with repeat vectors c01 ¼ c1; c
0
2 ¼ c1 þ c2; c

0
3 ¼ c3. This corresponds to LX = LZ = 10 nm,

0
ffiffiffi
2
p

nm, h1 = p/4, h2 = 0 and h3 = 0. (c) Tilted cell with repeat vectors c001 ¼ c1 þ c3; c002 ¼ c2 þ c3; c
00
3 ¼ c3. This corresponds to

Y ¼ 10
ffiffiffi
2
p

nm, LZ = 10 nm, h1 ¼ p=3; h2 ¼ arctan
ffiffiffi
2
p

and h3 = p/6.

1
west six energy levels (in meV) for three different supercells shown in Fig. 9 with B = B0 (n0 = 1)

o. Model (a) Model (b) Model (c)

38.4696 38.4702 38.4698
53.5109 53.5114 53.5033
53.5109 53.5115 53.5033
93.5106 93.5345 93.5109
98.1234 98.1437 98.1239
98.6348 98.6353 98.6393
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In Fig. 9b, the magnetic field direction ðc03Þ is still orthogonal to the plane spanned by the other two repeat
vectors. The method presented above is also applicable to the most general case in which c3 is not orthogonal
to c1 or c2. Fig. 9c shows such a supercell, whose repeat vectors are
Table
The lo

Band n

1
2
3
4
5
6

This re

Fig. 10
region
quantu
superc
h2 = 0,
p/2, h2
c001 ¼ c1 þ c3;

c002 ¼ c1 þ c2;

c003 ¼ c3;

ð92Þ
in which none of the two repeat vectors are orthogonal to each other. The energy levels are listed in the last
column of Table 1. The energy levels of these three different supercells all agree well with each other, confirm-
ing the correctness of the approach. In all three calculations, we use 32 · 32 · 32 plane-wave-like basis func-
tions and use the bare mass of the electron me. The slight difference between the three sets of numerical results
is due to the fact that different sets of basis functions are used in each calculations, since different shape of the
supercell leads to different truncation schemes of basis functions in reciprocal space. This difference is further
reduced if more basis functions are used in the calculations.

Because the magnetic field is B = n0B0, we can apply the same magnetic field by specifying n0 = 2 while
reducing B0 to half of the value given above. This is done by doubling the size of c1, so that the supercell
now contains two quantum wells. The resulting energy levels of the three different supercells are given in
Table 2. Each energy level in Table 1 now appears two times (doubly degenerate) in Table 2, because the
supercell is twice as big in the latter case. Other than that, the energy values in the two tables agree well with
each other, because they all describe the same array of quantum wells.

5.2.2. Quantum wells in a magnetic field of arbitrary direction: the case of dispersionless energy levels

In the previous section we only considered the case of a magnetic field parallel to the columnar axis of the
quantum well. We now consider a magnetic field that is at an angle h = 54� with respect to the plane of a plate-
like quantum well. Again, we compute the energy level of this system using three different but equivalent
supercells and compare their numerical results.

In Fig. 10a, the plane of the quantum well is parallel to two repeat vectors, c1 and c2, and the magnetic field
direction (c3) is at h = 54� with c1. In Fig. 10b, the same geometry is described using an orthogonal supercell.
2
west six energy levels (in meV) for three different supercells that are twice as big as those shown in Fig. 9

o. Model (a) Model (b) Model (c)

38.4665 38.4721 38.4665
38.4674 38.4706 38.4675
53.5080 53.5120 53.5064
53.5081 53.5127 53.5063
53.5091 53.5126 53.5076
53.5077 53.5130 53.5106

duces B0 by half. Together with n0 = 2, the total magnetic field B = n0B0 is the same as before.

e e e

e
eZ

Z

X Y Y

z

eY eX eX

z ze e e

D

. A periodic array of plate-like quantum wells represented by three supercells. The potential inside the quantum well (shaded
) is zero and the potential outside is V0 = 225 meV. The width of the quantum well is D = 3.5674 nm. (a) A tilted supercell with
m well plate parallel to the x–y plane. LX = 14 nm, LY = 14.119 nm, LZ = 37.082 nm, h1 = p/2, h2 = 36�, h3 = 0. (b) An orthogonal

ell with the quantum well tilted with respect to all repeat vectors. LX = 3.1333 nm, LY = 51.039 nm, LZ = 37.082 nm, h1 = p/2,
h3 = 0. (c) A tilted supercell with the quantum well normal to the x–y plane. LX = 9.069 nm, LY = 30 nm, LZ = 37.082 nm, h1 =
= 54�, h3 = p/2.
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Because c3 and c2 are orthogonal to each other, the quantum well plane is at an angle h = 54� with c3 and at an
angle p/2 � h = 36� with c2. In Fig. 10c, the magnetic field direction c3 is at p/2 � h = 36� with c2 and the quan-
tum well plane is perpendicular to c2. All three supercells correspond to the same physical problem. The width
of the quantum well is 3.5674 nm and the effective mass of the electron is meff = 0.067me, corresponding to elec-
trons in GaAs–Al0.3GaAs0.7. The magnitude of the magnetic field is B = 25.861 T and the Bloch wave vector j

is set to zero. The lowest six energy levels for these three supercells are listed in Table 3. The numerical results
for these three supercells agree well with each other. However, the three supercells are not equally convenient
to use. With the tilted supercell represented in Fig. 10a, we can easily vary the orientation of the magnetic field
with respect to the quantum well by tilting eZ, without changing other aspects of the supercell. In comparison,
changing the magnetic field orientation with respect to the quantum well in Fig. 10b would be much more cum-
bersome; the aspect ratio of the supercell and the position of the quantum well would have to be redesigned for
each magnetic field orientation. This would make it difficult to compare results from different magnetic field
orientations. Also, when the magnetic field is tilted with respect to the quantum well, as is the case here,
the energy levels are found to be independent of the Bloch wave vector j, consistent with previous results
[17]. However, if the magnetic field is parallel to the plane of the quantum well, the energy levels are not dis-
persionelss and this is the case presented in the next section.

5.2.3. Quantum wells parallel to the magnetic field: the case of dispersive energy levels

We now consider the band structure of a plate-like quantum well under a uniform magnetic field, as shown
in Fig. 11a. The magnetic field direction (c3) is parallel to the quantum well plane and the Bloch vector j is
varied along the jx direction. The thickness of the quantum well is L . 3.6 nm. The size of the supercell is
LX = 1.5992 nm and LY = 100 nm. The magnitude of the magnetic field is B . 26 T. The potential energy
Table 3
The lowest six energy levels (in meV) for three different supercells shown in Fig. 10

Band no. Model (a) Model (b) Model (c)

1 129.0465 129.0459 129.0456
2 164.9916 164.9897 164.9888
3 200.8959 200.8927 200.8917
4 236.7851 236.7809 236.7234
5 254.1594 254.1587 254.1130
6 265.9358 265.9352 265.8732
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Fig. 11. (a) The energy level of a plate-like quantum well. V is only a function of y and is zero inside the well and V0 outside the well. The
magnetic field is parallel to the z direction, i.e. within the plane of the quantum well. (b) Energy levels of the quantum well as a function of
Bloch wave vector jx. Lines correspond to previous data [18] and symbols correspond to our results. jx is proportional to the distance
between the center of the electron wave packet and the center of the quantum well.
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is zero inside the quantum well and is V0 = 225 meV outside. The effective mass of the electron is
meff = 0.067me. The same problem has been studied previously by [18]; their data will be used for comparisons
here.

The band structure is plotted in Fig. 11b. As a result of our choice of gauge, the magnetic field localizes the
electron wave function in the y-direction. jx corresponds to the center of the electron wave packet. When
jx = 0, the electron is at the center of the quantum well. The ground state energy is the lowest in this case.
At sufficiently large jx, the electron wave packet is mostly immersed in the constant-potential-energy region
in which V = V0. In this case, the energy levels should reduce to Landau levels plus a constant, V0. As shown
in Fig. 11b, our results agree well with those reported previously [18]. Notice that in the previous study, the
energy levels of an isolated quantum well are computed as a function of the center of the electron packet,
which did not require MPBC or a supercell. In this study, we considered a periodic array of quantum wells.
The size of the supercell is large enough so that the interference between neighboring quantum wells are small.
Nonetheless, if jx becomes too large, then the center of the electron wave packet will move to the neighboring
quantum well. In this case, the two results will deviate from each other. While the energy levels from [18] will
remain constant at large jx, our energies will be periodic functions of jx. When the separation between neigh-
boring quantum wells is small, their interference will give rise to a non-trivial band structure. The band struc-
ture of a periodic array of quantum wells under a uniform magnetic field is presented in Section 5.3.

5.2.4. Potential well in a magnetic field of arbitrary direction

We turn to the study of the effect of the orientation of the magnetic field with respect to a potential well.
The potential is a quadratic function of z, V(z) = Az2. The iso-surfaces of this potential function are planes
orthogonal to the ez direction. The magnetic field is tilted at an arbitrary angle with the ez direction. The
energy levels as a function of the magnitude and orientation of the magnetic field have been obtained analyt-
ically [19] and are used as benchmarks here.

Fig. 12 plots the separation between neighboring energy levels as a function of magnetic field strength, both
in unit of �hx0; w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=m�

p
, when the magnetic field is at 0�, 30�, 60� and 90� with the ez direction. The

agreement between our numerical results and previous analytic results is excellent.

5.3. Magnetic band structure

In this section, we present calculations of a magnetic band structure to illustrate the benefit of our method
over existing, alternative approaches. Magnetic band structures have been computed before, using tight bind-
ing models [20], effective Hamiltonians [21], or grid discretized Hamiltonians [22], but not at the ab initio level
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Fig. 12. Energy gap of a parabolic potential well V(z) for different angle h between the magnetic field and z-axis. Lines are previous data
and symbols are our result. The top continuous line is for h = 90�. Dashed dot lines are for h = 60� and dashed lines are for h = 30�. Two
straight solid lines are for h = 0�.
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Fig. 14. Magnetic band structures of a periodic array of quantum dots forming an sc lattice: (a) B = 10.34 T, (b) B = 20.68 T.
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in which the electron wave functions are expressed as smooth functions in real space and expanded in terms of
plane waves. Here we present the first ab initio calculation of a magnetic band structure. In particular, we com-
puted the band structure of a simple cubic superlattice with and without magnetic field. The size of the super-
cell is LX = 20 nm, LY = 20 nm, LZ = 20 nm and the axis are orthogonal. We assume that our sc lattice is
composed of quantum dots and the potential of each quantum dot is modeled by a cubic, finite quantum well
of size is 5 nm · 5 nm · 5 nm; the potential energy is zero inside the quantum dot and 243 meV outside. The
effective electron mass is set to meff = 0.067me. The first Brillouin zone and the band structure in the absence of
a magnetic field are shown in Fig. 13, which is in good agreement with the results of Li et al. [23], who also
used a plane wave basis to calculate the electronic band structure of the same model system.

Next, we applied a uniform magnetic fields in the eZ direction. The strength of the magnetic field is quan-
tized by Eq. (73), i.e. B = n0B0. The results for B = B0 and B = 2B0 are given in Fig. 14, where B0 = 10.34 T. A
comparison between the band structures obtained with B = 0, B = 10.34 T and B = 20.68 T shows that the
presence of a magnetic field introduces a weak change on the ground state of the systems, while the changes
in the excited states are substantial. It is also interesting to note that the energy band gap decreases at
B = 10.34 T and increases at B = 20.68 T, compared with B = 0 case.

6. Summary and outlook

We have presented a method to introduce a constant magnetic field in solving the Schrödinger’s equation
for electrons, within an ab initio formulation. The method retains the numerical advantages of supercell
approaches with PBC, plane-wave-like basis, and fast Fourier transforms, and it is applicable to arbitrarily
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tilted supercell and non-zero k-points. This is a first step towards enabling ab initio molecular dynamics of
condensed matter under a magnetic field. The next step towards a working scheme for ab initio MD simula-
tions involves computing forces on the nuclei. The presence of an external magnetic field requires the calcu-
lation of Berry’s phase of the electronic wavefunctions, which produces an effective Lorentz force acting onto
the nuclei [24], in addition to the usual electrostatic or Hellman–Feynman force from derivatives of the Kohn–
Sham energy. The calculation of forces on ions will be dealt with in a forthcoming paper. Other open problems
include how to account for spin–orbit coupling, and whether or not the exchange and correlation potential
entering the functional used to solve Kohn–Sham equations needs to be revised when a strong magnetic field
is present.
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Appendix A. MPBC at n0 > 1

It would be convenient if we can vary the strength of the magnetic field, B = n0B0, by changing the value of
n0, while keeping the supercell shape unchanged. When n0 > 1, the implementation of MPBC is slightly more
complicated than the case of n0 = 1. For simplicity, we only discuss the case of orthogonal cell and zero
k-point in this appendix. First of all, when n0 > 1, MPBC in intermediate space becomes
Fi
f ðx� a; kyÞ ¼ f ðx; ky � n0GyÞ: ð93Þ

This means that as x moves from the left side to the right side of the supercell, the function f ðx; kyÞ should
continue with ky shifted by n0Gy, as shown in Fig. 15. Therefore, the function f ðx; kyÞ can be considered as
Gy

ky

x

2Gy

ky

x

ky

x

l = 0 l = 1

2Gy

g. 15. MPBC in intermediate space for n0 = 2, B = 2B0. Wave function f(x,ky) can be rearranged into f ðx̂; lÞ, where l = 0,1.
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n0 spirals interlaced together. Notice that it is no longer correct to declare f ðx; kyÞ ¼ f ðx̂Þ, where x̂ � xþ aky

n0Gy
,

because such a definition would imply,
f ðx� a=n0; kyÞ ¼ f ðx; ky � GyÞ ð94Þ

which is not true.

Instead, we need to introduce new variables in intermediate space. Let
ky=Gy ¼ qn0 þ l; ð95Þ

where q and l are integers (0 6 l < n0). q and l are the quotient and residue when ky/Gy is divided by n0. The
proper definition of x̂ is,
x̂ � xþ a
n0

ky

Gy
� l

� �
¼ xþ aq: ð96Þ
The intermediate-space wave function can be re-written as
f ðx; kyÞ ¼ f ðx̂; lÞ; ð97Þ

where l ¼ 0; 1; . . . ; n0 � 1. When n0 = 1, l can only be zero, and the intermediate-space wave function reduces to a
one-dimensional function f ðx̂Þ. Suppose the sum over ky is truncated, e.g. ky ¼ �ðNy=2ÞGy ; . . . ; ðNy=2� 1ÞGy

(assuming that Ny is an integer multiple of 2n0). Then the range of x̂ becomes ½�N ya=ð2n0Þ;Nya=ð2n0Þ�.
Fourier transforming f ðx̂; lÞ along x̂ for each l leads to the reciprocal-space wave function,
f ðx̂; lÞ ¼
X

kx̂

cðkx̂; lÞ exp½ikx̂x̂�; ð98Þ

cðkx̂; lÞ ¼
n0

N ya

Z Ny a=ð2n0Þ

�Ny a=ð2n0Þ
f ðx̂; lÞ exp½�ikx̂x̂� dx̂: ð99Þ
Combining Eqs. (32) and (98), u(x,y) can be expressed in terms of cðkx̂; lÞ as,
uðx; yÞ ¼
X
kx̂ky

cðkx̂; lÞ exp½ikx̂ðxþ aqÞ þ ikyy�; ð100Þ
where ky/Gy = qn0 + l. In other words, u(x,y) is expanded as a sum of plane-wave-like functions, each one sat-
isfying MPBC, and cðkx̂; lÞ is the expansion coefficient.

To evaluate Ĥwðx; yÞ given an arbitrary trial wave function w(x,y), we separate Ĥ into three parts, similar
to the case of n0 = 1 (Section 3.3),
Ĥ ¼ T̂ x þ T̂ y þ V̂ ; ð101Þ

T̂ x ¼ �
�h2o

2
x

2m
; ð102Þ

T̂ y ¼
ð�i�hoy þ eBxÞ2

2m
¼

n2
0�h

2G2
y

2ma2
x� i

a
n0Gy

oy

� �2

; ð103Þ

V̂ ¼ V ðx; yÞ: ð104Þ
T̂ x is the x-component of the kinetic energy, T̂ y is the y-component of the kinetic energy, and V̂ is the potential
energy. T̂ x, T̂ y and V̂ can be easily evaluated in reciprocal, intermediate and real spaces, respectively. T̂ x is sim-
ply a multiplication in reciprocal space,
T̂ xcðkx̂; lÞ ¼
�h2k2

x̂

2m
cðkx̂; lÞ; ð105Þ
T̂ y is simply a multiplication in intermediate space,
T̂ yf ðx̂; lÞ ¼
n2

0�h
2G2

y

2ma2
x̂þ al

n0

� �2

f ðx̂; lÞ: ð106Þ
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As before, V̂ is simply a multiplication in real space,
V̂ uðx; yÞ ¼ V ðx; yÞuðx; yÞ: ð107Þ

Therefore, the three parts of Ĥuðx; yÞ can be evaluated separately in the three spaces and then assembled to-
gether by FFT, similar to that illustrated in Fig. 5. The same procedure can be generalized to arbitrarily tilted
supercells and non-zero k-points. The details are omitted here to save space. This procedure is implemented in
our code and is used in test case 4 (Section 5.2.4) where the magnitude of the magnetic field is changed by
varying n0 for a fixed supercell.
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